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\ ABSTRACT - continued

A theory is proposed which calls for a modified Jaunann derivative based on
the spin of specific material directions associated with the kinematic hardening.

This eliminates the spurious oscillation. General anisotropic hardening is shown
to require a similar approach.p-.,

Though in engineering practice most current stress evaluation for plasticity at
finite strains now assume isotropic hardening, the Bauschinger effect can be impor-
tant and is being more widely incorporated. This paper shows that current finite
element computer programs can then generate huge errors. Modification can be made
without total restructuring of the program. Further investigation of continuum
theory and micromechanics is needed for final resolution.

- .4



Stress Analysis for Anisotropic Hardening in
Finite-Deformation Plasticity

E. H. Lee and R. L. Mallett, Rensselaer Polytechnic Institute

and

T. B. Wertheimer, MARC Analysis Research Corp., Palo Alto, Ca.

Abstract

Kinematic hardening represents the anisotropic component of strain

hardening by a shift of the center of the yield surface in stress space.

The current approach in stress analysis at finite deformation includes

rotational effects by using the Jaumann derivatives of the shift and

stress tensors. This procedure generates the unexpected result that

oscillatory shear stress is predicted for monotonically increasing

simple shear strain.

A theory is proposed which calls for a modified Jaumann derivative

based on the spin of specific material directions associated with the

kinematic hardening. This eliminates the spurious oscillation. General

anisotropic hardening is shown to require a similar approach.

1. Introduction

In a intriguing paper [1], Nagtegaal and de Jong evaluated the

stresses generated by simple shear to large deformation in elastic-

plastic and rigid-plastic materials which exhibit anisotropic hardening.

In conformity with current practice for finite deformation in the case

of kinematic hardening, they used an evolution equation for the back

stress or shift tensor a (the current center of the yield surface) which

relates the Jaumann derivative of a to the plastic strain rate. This

incorporates aspects of finite deforation and ensures objectivity of

the evolution equation under rigid-body rotations. For a aterial which
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strain hardens monotonically in tension they obtained the unexpected

result that the shear traction grows to a maximum value at a shear

strain y of the order unity and then oscillates with a period of about

six as the strain increases.

Study of the analytical structure of the kinematic hardening law

shows that, in the case of simple shear, the use of the conventional

Jaumann derivative causes the shift tensor a to rotate continuously and

this generates oscillations in the stress field. However, the back-

stress a is a residual stress generated by deformation of the hetero-

geneous structure of crystallites and hence is embedded in the material.

Thus for simple shear the total angular rotation of a must be limited

since in simple shear, as pointed out in the following section, no lines

of material elements ever rotate by more than 7r radians. A modified

theory is presented which eliminates this anomaly and yields a mono-

tonically increasing shear traction for the problem under discussion.

2. The Kinematics of Simple Shear

Using rectangular Cartesian coordinates for the configuration at

time t, a simple shear in the x1 direction is defined, as depicted in

Fig. 1, with displacements

u 1 a ktx 2 , u2 " u3 0 0. (1)

The corresponding velocity field is

v1 - kx2, v2  v 3
0  (2)

having the velocity gradient tensor L with symmetric part D, the rate of

deformation, and anti-symnetric part W, the spin.

avi [o k 01][ k/2 0 W k/2 0 3L- -- 0, D- 2 ,W- -k/2 0 0 (3)j 100 0o 0 0 0 0 o
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The velocity field is thus steady with constant rate of shear strain

- k and constant spin W with angular speed k/2.

Because the velocity field is linear in x, straight material lines

remain straight and, for example, the initially square figure illustrated

in Fig. I is deformed into a sequence of parallelograms. The velocity

gradient is uniform over the body so that the angular velocity of any

line of particles in the (xI, X2) plane depends only on its current

orientation angle 8 (see Fig. 1) and is given by

8 =-k sin 2e (4)

It is evident that the line of particles initially on OA in Fig. 1o

approaches the xl axis as t * . Moreover, the largest total rotation

of any line of particles is less than w, this bound corresponding to the

initial inclination 80 a W -, 0 < E - 0.

Note that the angular velocity of the material lines 8 - 7/4 or

3w/4, which coincide instantaneously with the principal directions of

the deformation rate tensor D, is k/2, equal to the spin as it should

be. This is also the average of the angular velocities over all directions

in the current configuration.

3. The Currently -Adopted Kinematic-Hardening Analysis for Finite Strain

The back stress a, which prescribes the position of the center of

the yield surface in stress space, provides the asymmetry in the yield

function between continued and reversed loading needed to incorporate

such phenomena as the Bauschinger effect.

For combined kinematic-isotropic hardening [2] with the isotropic-

hardening stress measure satisfying a Mises type yield condition, the

yield function takes the form

(slj ij a ij) (S- (-):(s--) - (s) 2o()3 (5)
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where ( ):( ) denotes the trace of the matrix product and ( ).( ) the

dot product in nine-dimensional stress space (it is helpful to keep in

mind both of these representations). The matrix or vector s is the

stress deviator and a is the tensile value of the isotropic part of the

yield stress. The latter depends on the history of plastic deformation

as expressed through the generalized plastic strain scalar ZP given by

the growth law

Z= 12 D)F'DDI3 (6)

where Dp is the plastic strain rate.

The growth of the anisotropic part of the yield stress in kinematic

hardening is given by the evolution equation for the internal variable a

-a-Wa + aW -C(P)D p  (7)

where, for finite-deformation applications, the Jaumann derivative a is

commonly chosen to replace the material derivative a used in infin-

itesimal displacement theory. This ensures that (7) is objective under

superposed time-dependent rigid body rotations.

Large shear strains y - kt of the order 10 are considered so that

elastic strains can be neglected and rigid-plastic theory adopted. Thus

the plastic strain rate equals the total strain rate defined in (3)

DP - D. (8)

The normality condition associated with the yield function (5)

determines the flow rule
Dp  (-).(9)

Thus with Dp prescribed by (8) and (3), ZP(t) can be determined by inte-

grating (6), and a(t) by integrating (7) from the initial condition

a(0) - 0. Equations (9) and (5) then determine (s-a), so that s(t) can

be evaluated.

Such an evaluation was presented in [1] and both it and the cor-

* A,
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responding elastic-plastic solution resulted in oscillatory stresses.

The rigid-plastic case corresponding to purely kinematic hardening

(a constant) and linear hardening in tension (constant tangent modulus

3C/2) can be evaluated analytically, as pointed out to us by Y. F. Dafalias,

to give shear stress

T "s12 -aol/v-+ (C sin y)/2, Y - kt (10)

and the non-zero normal stress deviator components

S11 a - S22 - C(l-cos y)/2. (11)

For comparison with the results of a modified theory, these stress vari-

ations are shown by the oscillatory curves in Figs. 2 and 3 respectively.

The oscillations arise since the spin terms in (7) generate a tensor a

which rotates with angular velocity k/2 and, because of (5) with constant

a0 , this causes the components of a and hence of s to oscillate with

angular frequency k, and thus with period 21T in ( - kt.

4. A Modified Constitutive Relation

Constitutive relations for anisotropic hardening were initially

developed for infinitesimal displacement theory, so that, for example,

the evolution law (7) for a was expressed in [2] as

a - C(ZP)Dp  (12)

where the superimposed dot denotes the material derivative with the time

differentiation performed with respect to axes fixed in space. The term

on the right hand side of (12) expresses the influence on the growth of

a of the plastic flow currently taking place. However, the effect of

the rotation of a due to the deformation of the material in which the

back stress is embedded also contributes to the change of a, but this

component is neglected in infinitesimal displacement theory in which

rotation terms are consistently neglected compared with strain terms.

It was pointed out by Rice (3] that, when the tangent modulus is of the



6

order of the stress, such an approximation is not justified, even at

small strains, and this is often the case in elastic-plastic theory.

Thus, for finite deformation, and possibly even for small deformation,

the effect of the rotation of the back stress generated by previous

plastic flow must be added to the contribution of the plastic flow

currently taking place and thus to the right hand side of (12).

It should perhaps be pointed out that more elaborate laws than (12)

were developed with the same kinematic restriction of neglecting the

change in a due to its rotation, and these can be written [1]

aij " LijkL DPki (13)

in terms of the shift operator L which could depend on n, a, iP and

other internal variables determined by the history of deformation. These

laws were devised to obtain better agreement with experimental measurements,

particularly those involving unloading and reversed loading, but obviously

made no contribution towards improving the neglect of the rotation

influence. Since both laws (12) and (13) are incremental in form,

relating increments or rates of a and strain, they could be applied

at any instant during the deformation history since the required

rate variables already occur there.

As mentioned in the Introduction, the back stress a is embedded in

the material as residual stresses generated due to the heterogeneous

structure of anisotropic crystallites forming the polycrystalline material.

Alternatively this influence can be thought of in terms of dislocations

piled up against grain boundaries, or other analogous micro-mechanisms,

the mobility of which depends on the strain rate tensor imposed, both

with regard to the asymmetry between continued and reversed straining

and to the direction of straining in the material. A study of the

micro-mechanics of the situation, either at the crystallite level, the
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dislocation level, or at both, may be needed to fully understand this

question, but. such seems not now to be available. However information

can be gleaned from the macroscopic theory. In particular, the principal

component of a having the largest absolute magnitude produces the major

influence on the yield surface and hence on the stress field and is

carried in the lines of material elements oriented in the corresponding

eigenvector direction. Thus rotation of these lines of material elements

may be considered to incorporate the major rotational influence of the

back-stress generated by previous plastic flow.

In the case of simple shear, the principal component as3  is

zero and since a is a deviator tensor the other two are equal in magnitude

and opposite in sign. Thus the choice of the eigenvalue of largest

absolute magnitude is not unique and one must therefore look further

into the evolution of a. In the case of kinematic hardening according

to (7) or (12), a initially' grows parallel to Dp with the tensile eigenvector

at e - n/4 and the compressive one at e - 3n/4. Increments parallel to

Dp are being continually added and for the tensile direction the line of

elements which carries the back stress rotates towards the x, axis

with angular velocity k/2 initially and thereafter with ever decreasing

speed as is evident from (4). In contrast, material lines instantaneously

coincident with the compressive eigenvector initially rotate with increasing

angular velocity as they approach the x2 axis. The increasingly larger

angle which the rotated eigenvector makes with the corresponding tensor

increments continuously being added (due to the CDP term) inhibits the

growth of the compressive eigenvector compared with the tensile one. For

example, In simple tension or compression the increments sum in fixed

direct' .s and generate the maximum kinematic hardening component (see

.-:.U [6], 9. 39 for comparison of tension and compression, with shear).

4



Such considerations suggest that, in the case of simple shear, the rota-

tion of lines of material elements along the tensile eigenvector of a

play the major role in determining the influence on the evolution equation

for a of the back stress caused by previous plastic flow.

Rotation terms must thus be added to (12) yielding

C - C(19) Dp + W*--aW* (14)

where the spin W of the line of material elements considered to carry the

back stress is given by the angular velocity (4).

Comparing this with (7), the currently accepted evolution equation

for kinematic hardening at finite deformation,shows that (7) is equiv-

alent to assuming that the back stress already generated contributes to

according to rotation with constant angular speed k/2 (even though it

is embedded in material no directed elements of which ever rotate by

more than IT radians). The nature of the connection between the elements

in an elastic-plastic continuum and the stresses needed to generate such

unlimited rotation of the embedded stress clearly rule out the validity

of (7) for ductile metals.

The structure of (14) suggests a modified interpretation by writing

it in the form

- -W*O+L+w -C C(ip) Dp  (15)

where a defines a modified Jaumann derivative associated with the spin

W of lines of material elements carrying the major influence of the

back stress a. It is shown in the Appendix that a is objective. In

fact it is shown that for a spin Sl(t) the modified Jaumann derivative

-a + a.2 (16)

is objective if, under time dependent rigid body rotation expressed by

the rotation matrix Q(t), 9 transforms as

+ (17)
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This expresses a simple geometrical requirement, namely that the time

dependent rotation Q(t) superimposed on the spin Q(t) adds the current

superimposed spin tensor QQ-1 to the spin Q transformed by the rotation

which has taken place. This applies in the case where a is the spin

of lines of material elements in a deforming body. These matters are

discussed in more detail in Section 7.

5. Comparison of Solutions

Equation (14) was integrated numerically with the initial condition

cL(0) - 0 and the result was substituted into (5) and (9) to give the

stress variations shown in Figs. 2 and 3 for the shear and normal

stresses olz and all - -azz. Purely kinematic hardening was assumed

with an initial yield stress Y - 207 MPa (30 ksi) and linear tensile

hardening with modulus 310 MPa (45 ksi). These values are appropriate

to model an aluminum alloy. The rigid-plastic analysis used implies an

incoupressible medium and thus stresses are determined only to within an

arbitrary hydrostatic pressure since it causes no deformation. This

pressure was taken to be zero so that the stresses plotted are stress

deviators. Fig. 2 also includes the stress-strain relation in shear for

isotropic hardening corresponding to the same tensile behavior. No

normal stresses are generated in this case.

It is seen that all the stress-strain curves have a comnon tangent

at zero strain. The two kinematic hardening solutions remain close to

each other for strains up to about 0.5 but at larger strains the stres-

ses predicted on the basis of the conventional Jaumann derivative oscil-

late while the approach suggested in this paper yields a monotonically

increasing shear stress-strain curve, with a tangent modulus which

decreases as the strain increases.

The stress fields of the conventional approach and the suggested
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new one agree for small strains because the eigenvectors of DP and

initially coincide so that W - W as mentioned in Section 2. With

increasing strain, the tensile eigenvector of the new solution approaches

an asymptote at 6 % 15*. Thus the tensile strain rate in simple shear

becomes inclined at some 300 to the direction in which the maximum tensile

yield stress has been generated by induced anisotropy. This angle has been

increasing and is consistent with the lessening of the tangent modulus.

Such softening has been termed a rotational Bauschinger effect by Jonas

[4]. The oscillations predicted by the solution based on the conventional

Jaumann derivative are clearly due to the inappropriate use of the spin

W to express the influence of the back stress already generated (as

discussed in the previous section).

Both [1] and the present paper analyzed purely kinematic hardening

without a component of isotropic hardening in order to focus on the

effects of anisotropy, although results based on isotropic hardening

were presented for comparison. This led to a rather drastic difference

in the stress variations given by the two approaches to the kinematic

hardening case. A physically more appropriate representation for many

materials would be isotropic hardening initially, later accompanied by

the growth of a kinematic component. When the conventional Jaumann

derivative is used this would introduce an oscillatory component super-

imposed on a smooth monotonically increasing curve, so that initially a

minor ripple with period 2n would appear, insufficient to produce a zero

tangent modulus. This could thus be observed without an instability

developing.

Recently torsion tests have been carried out to a shear strain of

7 on six different ductile metals (copper, brass, nickel, steel and two

types of iron) (5]. Tests were carried out for a range of strain rates

.=. . i... -..
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and the strain-rate influence was not so marked as to rule out adequate

analysis on the basis of rate independent theory. In the low strain-

rate isothermal range monotonically increasing stress-strain curves were

obtained except for an initial upper yield in the steel and one iron.

No indication of a ripple or superimposed oscillation was evident.

These results support the concept presented in this paper that the

continued rotation of a predicted by the use of the conventional Jaumann

derivative has no physical validity.

6. Elastic-Plastic Stress Analysis

Finite-element elastic-plastic computer programs are available for

kinemadc hardening and have been considered applicable for stress and

deformation analysis at finite deformation since they use the (conventional)

Jaumann derivative of stress to account for rotational effects. They

were shown in [1] to predict stress oscillations in simple shear. In view

of the rigid-plastic solutions discussed in the previous section, use of

the modified Jaumann derivative as in the evolution equation (15) can be

expected to eliminate the spurious oscillations and provide a satisfactory

analysis. Thus the computer codes now in use can be corrected simply by

changing the time derivative adopted.

Such a time derivative occurs not only in the evolution equation (15)

but also in the plastic flow law where it operates on the stress deviator

s and, for kinematic hardening, takes the form

Dp _-3-(s__a)(s)] (18)
- 2hcY2

0

where h is a strain hardening modulus (see (2] for the infinitesimal displace-

ment version). Summation of the elastic and plastic strain rates to give

total strain rate yields

D - De + Dp . (19)
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Since for elastic-plastic analysis (19) replaces (8), Dp is not prescribed

by the kinematics so that (s-ct) cannot be determined by (9) and (5) but

instead must be determined by simultaneous integration of the evolution

equation (7) or (15) and the flow law (18).

A modified version of the MARC program was used for such an elastic-

plastic analysis and the results fell within 1% of the rigid-plastic

solutions shown in Figs. 2 and 3. Since the elastic-plastic model does

not represent an incompressible material, the stress (not just the

deviator) was evaluated. Because the velocity boundary conditions

involve no volume change and the flow law (18) prescribes incompressible

plastic deformation, the elastic deformation should also be incompres-

sible and hence the stress deviatoric. With 033 zero, all and a22 were

found to be opposite in sign and equal in magnitude to within 0.1%.

The. close agreement of the finite-element solution may seem surprising

in view of the severe element distortion at shear strains y - 10.

However, it must be borne in mind that the velocity variation is linear

which can be modeled exactly by the finite elements even when distorted.

In an earlier report [7) on this topic a Jaumann type derivative

of stress based on the spin of the eigenvector triad of a was used in the

flow law. Since only the part of the spin of a associated with material

rotation needs to be eliminated from the stress-rate loading term, the
*

Jaumann derivative s should have been adopted. Rotation of the ani-

sotropic yield surface about the stress origin can be generated by plas-

tic flow and this component must be associated with non-zero stress rate.

This change in the analysis is very significant since only one rate

definition now appears in the elastic-plastic theory which greatly sim-

plifies numerical implementation.
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7. General Theory

Consideration so far has been focused on simple shearing because of

the unexpected oscillating shear stress results presented in [1]. How-

ever, the concepts involved can be generalized and applied to more complex

problems. One can expect problems similar to those encountered in simple

shearing to arise often in view of the frequent onset of shear locali-

zation or banding associated with plastic deformation which will involve

a similar deformation-rotation coupling.

A complete investigation of the micro-mechanics and the structures

of possible macroscopic constitutive relations will no doubt be needed

to fully understand this phenomenon and to generate a fully tested

theory. However, the approach suggested in Section 4 does appear to

embody the main essence of the phenomenon and can be generalized to

three-dimensional problems.

For simple shear, the deformation (2) occurs in the (xl, x2)

shearing plane so that the material elements carrying the back stress a

must rotate about the axis x3 normal to the plane. Thus only a direction

in the plane is needed to determine the associated spin. In three

dimensions a component of spin around such a direction may also be needed.

Since the main back-stress influence is embedded in the plane defined by

the eigenvectors of a associated with the maximum and minimum eigenvalues,

it is suggested that the spin W should be determined by the angular

velocity of the material element line instantaneously coincident with

the eigenvector of a corresponding to the eigenvalue with maximum absolute

value, with a spin component around this vector determined by rotation

of the plane containing.the material elements instantaneously coincident

with both eigenvectors.

The general theory of constitutive relations of the type considered
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here was developed by Onat and Fardshisheh [8] who showed that for objec-

tivity of a relation between a, D and W involving a tensor state variabiz

a in addition to scalar state variables (which for simplicity will not

be specifically indicated in the following representation) it must take

the form

.a - g(,a,D) + Wa - OW (20)

- h(G,a,D) + Wd - aW (21)

where the functions g and h are isotropic tensor functions. It is

common to combine the spin terms with the material-rate terms to obtain

a - -OW + aW - g(,a,D) (22)

a - a -Wa + aW - h(a,a,D) (23)

The conventional Jaumann derivative thus appears on the left-hand side

of each equation. Since large strains are of interest, rigid-plastic

theory will be considered in order to simplify the discussion and thus
D= p

D - D.

Discussion will be focused on the evolution equation (15) with the

understanding that similar considerations apply to the flow law (18). It

was pointed out in Section 4 that equation (15) is objective and so it

must be expressible in the form (21). This can be independently
*

established by expressing W in terms of W and D.

Consider an arbitrary unit vector n and a linear segment of material

elements n da. The relative velocity between the ends of n ds is

(3vi/ax )dx i - Ln ds (24)

The component normal to n determines the spin W of that segment to within

an arbritrary spin about the segment. Making use of L - D + W and can-

celling ds throughout gives

T(D+W)n- [n (D+W)n n Wn (25)

Aar
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The W term in the brackets reduces to zero because W is anti-symmetric
T

and introduction of n n - 1 and factoring gives

(W + DnnT - nnTD) n - W*n

so that a solution of (25) is the anti-symmetric matrix

W - W + DnnT - nnTD (26)

and (14) has the form (21). W can readily be shown to involve no spin

around n introduced by the terms involving D.

For simple shearing,W is determined by the spin of a line of

material elements instantaneously coincident with an eigenvector of a

and (26) gives this rotation about the n3 3 axis. For general deformation
*

it was suggested above that W be defined by the spin of material elements

lying along one eigenvector direction, the spin around it being determined

by the rotation of the plane determined by material elements along another

eigenvector. Since the spins of both material lines are of the form

(26) it is clear that the resulting spin will have the form W plus a

function of D and hence will lead to a relation of the form (21).

For simple shearing (14) was integrated in the rigid-plastic case

and (14) and (18) in the elastic-plastic case using W from (4) and this

permitted accurate numerical integration because the total rotation of

a was less than v/4. Combining all the terms involving D together as in

(20) and (21) separates out self-cancelling, oscillating terms which

must then combine to yield a monotonic function. This may lead to in-

creasing the inaccuracy in carrying out numerical integration. However

in more complicated problems where a simple relation such as (4) does
,

not exist for W , it may be important to separate out the W and D var-

iables. Certainly for formulating the structure of the physical theory

the resultant rotational effect of the back stress already generated,

,which is dependent on W , is a significant and pregnant concept.
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As pointed out in Section 4, generalizations of the simple kinematic

hardening law attempt to improve the operator L in (13) but do not address

the effect of finite rotation of the a generated by previous plastic

flow in contributing to a. It would thus be a forlorn hope that the

more complicated models would remove the oscillating stress anomaly

associated with use of W in place of W in the evolution equation for

corresponding to (14). However, (1] deduces that the Mr6z multisurface

model and one involving an additional tensor variable do just that.

Study of the laws and methods of evaluation used in [1], reveals that

this conclusion arises from shortcomings of the laws selected or the

method of evaluation.

The general evolution law used in [1] is

a
Co- p (m:'Dp ) (27)

where m a (s-c), and p is a tensor which takes on different forms for

the three laws studied. In the case of simple shearing, (27) reduces

to

all - (P11/V' + al2)k (28)

a22 - (p22/ 13 - a12)k (29)

a1 2 . [Pi2/- 3 + ( 22 - a11 )/2]k (30)

The spin terms which generate the rotation of a and hence the oscillating

stress are the a12 terms in (28) and (29). In simple shear the

Bauschinger effect will certainly be most significant for reversed loading

in shear, hence a12 will be a dominant component. Thus, in conformity

with the physical theory developed in Section 4, one would expect oscil-

latory stress for all the laws since p expresses the infinitesimal strain

model and is not influenced by the rotation.

Study of the individual cases indicates why the anomaly was limited

to the kinematic hardening model. The Mroz multisurface model, for

r.. . -raw. .,
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example, was solved for the limit of an infinite number of closely adja-

cent surfaces for which the shift rate of each surface in stress space

was proportional to a instead of a linear combination of a and (s-a) away

from that limit. Thus the shift rate direction was independent of stress

or DP, a most unlikely circumstance. Moreover, the a generated as each

surface was activated was not accumulated, so that finally the isotropic

hardening solution was reproduced - hardly compatible with the anisotropic

hardening envisaged. These results therefore do not invalidate the

physical concepts on which the theory developed in Section 4 was built nor

the error introduced by use of the conventional Jaumann derivative in (15)

and (18).

8. Discussion and Conclusions

The modified Jaumann derivative (), eqn. (15), has some similarity to

the Jaumann type derivative (A) introduced by Dienes [10] which involves

spin associated with the rotation determined by the polar decomposition

theorem for the total deformation from the undisturbed configuration. The

latter is thus appropriate in formulating the constitutive equation of a

material for which the stress depends on the total deformation, for example

elasticity when it is expressed in differentiated hypo-elastic form. The

claim that (^) is also appropriate for plasticity is incorrect however

since plasticity obeys an incremental or flow type functional law, closer

to a fluid than a solid type, in which the specific configuration of the

initial undeformed state does not appear in the incremental or flow type

constitutive relation at later times. Deformation type plasticity theory,

in which the stress is determined by the total plastic strain, lends itself

to simplification through use of the polar decomposition theorem but,

except in the case of proportional loading, it is known to be inappropriate
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to represent plasticity, particularly at large strains.

Study of the physical situation described in Section 4 shows that the

influence of the anisotropy generated by previous plastic flow on the growth

of the back stress a arises from a spin associated with directions embedded

in the body in which the residual back stress is also embedded. This spin

also determines the appropriate Jaumann type derivative of stress in the

flow law which must eliminate the contribution to the material derivative

of stress which is not associated with the current plastic flowing. The

physical model presented considers the influence of the dominant principal

component of a but an analogous spin and functional law will arise in the

more complete analysis, based on the polycrystalline structure,of the gen-

eration and influence of the deformation induced residual back stress.

For the polar decomposition of the deformation gradient F - RU = VR,

the spin of directions embedded in the body depends not only on RR- but

also on U or V and their derivatives. For example, in a plane problem

of a constant stretch A in a time dependent direction 6(t),

F - U - V, R - I, the spin RR-  is zero, the principal directions of defor-

mation rotate with angular velocity 8 and the lines of material elements coin-

cident with the stretch direction rotate with angular velocity 8(1-1/h). Tus,

( ) based on the spin RR- I could clearly not express the needed rotational

influence of the back stress in this case and hence in general. In the cae

of principal directions fixed in the body, U can be diagonalized in the form,

U - P A(t)P-1, where the matrix of eigenvectors P is constant, so that the

velocity gradient L becomes

L - D + W - FF 1 - iR-I + REU-1 R- I

- RR- + RP AA-1 P-1 R-1 . (31)

.... . .. . . . . . . . . . . . . . . . . .. .. . . " - -- - - " " . . .. . . . ... . '. . . .. . . . .. .. . I l l i l l .. . .. ... . .. . .. I
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Since P and R are orthogonal and the diagonal matrix product is com-

mutative the last tern In (31) is symmetric and hence RR-1  W which

also equals W Only in such a special situation will the modified Jaumann

derivative (A) be appropriate for finite-deformation plasticity analysis.

Both the Jaumann type derivatives ( ) and (-) as well as the conventional

Jaunann derivative fall in the category (A3) discussed in the Appendix. Where-

as W in the conventional Jaumann derivative expresses the average angular

velocity of all directions around a point and so is an appropriate spin term

in the constitutive equation for an isotropic body, for an anisotropic material

certain directions will have a special influence and the range of objective

derivatives (A) permits this generality to be incorporated. The particular

selection will depend on the physical mechanisms involved as already dis-

cussed. In the case of plasticity with isotropic hardening, the stress rate

term devolves from the derivative of a stress invariant which is independent

of rotation, so that the same contribution will result whichever Jaumann type

derivative is selected.

Quite apart from physical appropriateness, it is fortunate that in plas-

ticity analysis it is not necessary to use variables involving the virgin con-

figuration of the material prior to any plastic flow, since many bodies plas-

tically formed in engineering practice have previously been subjected to

plastic flow when they were manufactured, for example, forming rolled sheet

or extruded rods. The approach presented here for kinematic hardening

exhibits the property necessary for application, that measurement of the yield

surface (assumed in this case to be consistent with combined isotropic-kin-

ematic hardening) supplies the information needed to formulate the consti-

tutive relation for the analysis of subsequent deformation. The shift tensor

a and the isotropic component of the tensile yield stress 0 comprise all

that is needed concerning the previous history of plastic deformation.

k l dK!
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We have suggested a generally applicable fornulation of kinematic har-

dening theory and have chosen a simple hypothesis for the macroscopic influ-

ence of the micromechanisms which generate the hardening. Clearly a thorough

study of this aspect of the theory is called for. This may require an

analysis of the micro-mechanics of polycrystalline material involving investi-

gation of the interaction between deforming crystallites, combined with a more

general study of the formulation and generalization of macroscopic constitutive

relations.

Finite-element computer codes which incorporate kinematic hardening

and are considered valid for finite strain are in active current use.

In view of the research findings presented here they can involve huge

errors. There is thus an urgent need to clarify this question and to

generate and demonstrate a reliable means of stress and deformation

evaluation in this field of considerable technological importance. To

date most forming analyses have been based on isotropic hardening theory,

but it is known that the Bauschinger effect, which is exhibited by many

structural metals, can have an important influence on such technologically

important phenomena as the generation of residual stresses due to forming.

This will increase the demand for reliable analysis to incorporate

anisotropic hardening into computer codes and hence to complete the

research task introduced in this paper.
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Appendix Objectivity

Since the modification of the conventional Jaumann derivative is

proposed in this paper, it is perhaps worthwhile to write down explicitly

the justification for the objectivity of the analysis. This involves in-

vestigating the superposition on the deformed body of a time-dependent

rigid-body rotation expressed by the proper orthogonal matrix Q(t) so

that the material point coordinates are transformed as x - Q x and (see

for example (9])
D-- Q D 0T , W Q-1 + Q W QT (Al)

The latter transformation expresses the geometrical interpretation of

adding the spin Q-1 associated with Q(t) to the original spin W trans-

formed by the superposed rotation at that time, Q(t). Such a trans-

formation clearly applies to the spin of any constituent of the motion

not associated with a specific coordinate choice such as a line of

material points or the eigenvector triad of a or a.

For a spin Q satisfying the transformation

S + Q jQT (A2)

the associated Jaumann type derivative of a is

Q a + a12 WA)

where a - Q a QT. The derivative transforms as

- an _ - MQ QaQ + QaQT (QQT + QnQ*) QaQT

T (4QT + QSQT). (A4)

Since Q Q.T is anti-symmetric, two pairs of terms on the right-hand

side of (A4) cancel and the transformed operator becomes

Q (a- _ a + n52)QT (A5)

This result permits a wide choice of Jaumann type derivatives all of

which are objective.

- ,-7
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